
SSL	
  certificate	
  validation	
  vulnerabilities	
  in	
  non-­‐
browser	
  applications

David	
  Soendoro1	
  ,Gu	
  Min2	
  ,Rohit	
  Goyal3 

Technical	
  University	
  of	
  Denmark

1. David	
  Soendoro,	
  s146725@student.dtu.dk	
  
2. Gu	
  Min,	
  s146723@student.dtu.dk	
  
3. Rohit	
  Goyal,	
  s146722@student.dtu.dk

Contact
1. 	
  Georgiev,	
  Martin,	
  et	
  al.	
  "The	
  most	
  dangerous	
  code	
  in	
  the	
  world:	
  validating	
  SSL	
  certificates	
  in	
  non-­‐browser	
  

software."	
  Proceedings	
  of	
  the	
  2012	
  ACM	
  conference	
  on	
  Computer	
  and	
  communications	
  security.	
  ACM,	
  2012.	
  
2. Conti,	
  Mauro,	
  Nicola	
  Dragoni,	
  and	
  Sebastiano	
  Gottardo.	
  "Mithys:	
  Mind	
  the	
  hand	
  you	
  shake-­‐protecting	
  mobile	
  

devices	
  from	
  ssl	
  usage	
  vulnerabilities."	
  Security	
  and	
  Trust	
  Management.	
  Springer	
  Berlin	
  Heidelberg,	
  2013.	
  
65-­‐81.

References

SSL(Secure	
  Socket	
  Layer)	
   is	
  a	
  default	
  standard	
  for	
  
secure	
   communication	
   on	
   the	
   internet.	
   We	
  
demonstrate	
   that	
   the	
   SSL	
   certificate	
   validation	
   is	
  
broken	
   in	
   a	
   lot	
   of	
   critical	
   applications,	
   especially	
  
non-­‐browser	
   apps.	
   Through	
   a	
   series	
   of	
  
experiments,	
  we	
   find	
  out	
   that	
   some	
  applications	
  
do	
  not	
  use	
  SSL	
  at	
  all	
  while	
  others	
   implement	
  the	
  
server	
   certificate	
   validation	
   incorrectly.	
   As	
   a	
  
consequence,	
   it	
   is	
   possible	
   to	
   do	
   man-­‐in-­‐the-­‐
middle(MITM)	
   attack	
   and	
   steal	
   important	
  
information	
  without	
  much	
  effort.	
  We	
  present	
  our	
  
experiment	
   results	
   for	
   two	
   apps	
   from	
   Google	
  
playstore.

Abstract

We	
   ran	
   our	
   first	
   experiment	
   with	
   a	
   major	
   bank	
  
application	
   in	
   Android.	
   The	
   request	
   status	
   was	
  
complete	
   and	
   the	
   certificate	
   provided	
   by	
   the	
  
proxy	
  was	
   accepted.	
   This	
   fault	
   indicates	
   the	
   app	
  
did	
   not	
   verify	
   the	
   validity	
   of	
   the	
   certificate.	
  
Consequently,	
   the	
   app	
   started	
   making	
   API	
  
requests	
   to	
   the	
  server.	
   	
  This	
   is	
  a	
  potential	
   threat	
  
because	
  the	
  intermediate	
  proxy	
  could	
  read	
  all	
  the	
  
request	
  parameters	
  as	
  shown	
  in	
  Figure	
  4.	
  
Second	
   experiment	
   is	
   done	
   with	
   a	
   digital	
   wallet	
  
application.	
   The	
   system	
   is	
   exploited	
   using	
   DNS	
  
poisoning	
   where	
   the	
   requested	
   domain	
   is	
  
translated	
   to	
   127.0.0.1	
   (localhost)	
   instead	
   of	
   the	
  
real	
  IP	
  address.	
  

Introduction

We	
  set	
  up	
  a	
  server	
  side	
  proxy	
  on	
  our	
  system	
  and	
  
redirect	
  our	
  mobile	
  traffic	
  to	
  this	
  proxy.	
  Once	
  we	
  
enable	
   the	
   proxy	
   for	
   SSL	
   traffic	
   intercep_on,	
   we	
  
can	
   see	
   if	
   the	
   app	
   accepts	
   or	
   rejects	
   the	
   SSL	
  
server	
  cer_ficate	
  generated	
  by	
  the	
  proxy.	
  	
  

	
  	
  	
  
Figure	
  2:	
  Server	
  cer>ficate	
  with	
  untrusted	
  CA	
  

Another	
   vector	
   of	
   compromise	
   could	
   be	
   a	
  
cer_ficate	
   with	
   incorrect	
   common	
   name	
   but	
  
signed	
   by	
   a	
   trusted	
   CA.	
   This	
   was	
   tested	
   by	
   DNS	
  
poisoning	
   the	
   network,	
   so	
   that	
   the	
   traffic	
   is	
  
redirected	
   to	
   our	
   server,	
   which	
   returns	
   its	
   own	
  
cer_ficate	
   for	
   all	
   the	
   requests	
   made	
   to	
   external	
  
servers.	
  

Figure	
   3:	
   Server	
   cer>ficate	
   with	
   incorrect	
  
common	
  name	
  

The	
  following	
  are	
  the	
  apparatus	
  we	
  need	
  for	
  this	
  
experiment:	
  

•	
  Charles	
  Proxy	
  
•	
  CA	
  and	
  server	
  cer_ficate	
  generated	
  by	
  OpenSSL

Methods	
  and	
  Materials

Figure	
  4:	
  Request	
  sent	
  from	
  client	
  through	
  proxy	
  
for	
  experiment	
  1	
  

In	
   this	
   request,	
   the	
   client	
   believes	
   that	
   the	
  
certificate	
   it	
   gets	
   from	
   the	
   fake	
   server	
   is	
   a	
  
legitimate	
   certificate	
   which	
   actually	
   is	
   its	
   own	
  
certificate	
   signed	
   by	
   trusted	
   CA.	
   Therefore	
   the	
  
client	
   sends	
   the	
   login	
   request	
   to	
   the	
   fake	
   server.	
  
Response	
  404	
  (Not	
  Found)	
   is	
   returned	
   	
  since	
  the	
  
fake	
  server	
  has	
  no	
  implementation	
  of	
  the	
  request.	
  
However,	
   the	
   request	
   gets	
   logged	
   on	
   the	
   fake	
  
server	
  as	
  shown	
  in	
  Figure	
  5.	
  

Figure	
  5:	
  Request	
  sent	
  from	
  client	
  through	
  proxy	
  
for	
  experiment	
  2

It	
  is	
  quite	
  common	
  to	
  see	
  that	
  SSL	
  certificate	
  validation	
  
is	
   completely	
   broken	
   in	
   many	
   critical	
   non-­‐browser	
  
softwares.	
   It	
   is	
   feasible	
   for	
   intruders	
   to	
   carry	
   out	
   the	
  
MITM	
   attack	
   to	
   the	
   system	
   which	
   might	
   result	
   in	
  
serious	
   consequences.	
   As	
   the	
   reasons	
   leading	
   to	
   the	
  
problem	
  involve	
  application	
  developers	
  along	
  with	
  SSL	
  
library	
  developers,	
   it	
   is	
   fundamental	
   for	
  both	
   sides	
   to	
  
develop	
  a	
  standardized	
  implementation	
  mechanism	
  	
  to	
  
avoid	
  all	
  the	
  possible	
  weaknesses	
  of	
  SSL	
  protocol	
  in	
  the	
  
future.	
   Besides,	
   better	
   analysis	
   tools	
   for	
   discovering	
  
errors	
   in	
   SSL	
   should	
   be	
   developed	
   in	
   SSL	
   connection	
  
stage.	
   More	
   focus	
   should	
   be	
   put	
   on	
   implementing	
  
formal	
   verification	
   techniques	
   and	
   programming	
  
language	
   support	
   for	
   automatic	
   checking	
   of	
   SSL	
  
misusage	
  in	
  applications.

Conclusion

	
  

Results

SSL	
  (or	
  TLS)	
  is	
  a	
  transport	
  level	
  protocol,	
  originally	
  
deployed	
   in	
   web	
   browsers	
   meant	
   to	
   provide	
  
secure	
   client-­‐server	
   communica_on	
   over	
   an	
  
insecure	
   channel.	
   The	
   protocol	
   uses	
   Public	
   Key	
  
Infrastructure	
  to	
  authen_cate	
  the	
  par_es	
  involved	
  
in	
   communica_on	
   and	
   thereby,	
   nego_a_ng	
   a	
  
symmetric	
   session	
   key.	
   As	
   a	
   part	
   of	
   the	
   protocol	
  
design,	
  authen_ca_ng	
  the	
  server	
   is	
  a	
  cri_cal	
  part	
  
of	
  the	
  handshake	
  procedure.	
  A	
  server	
  presents	
  its	
  
public	
   cer_ficate	
   to	
   the	
   client.	
   The	
   client	
   is	
  
supposed	
   to	
   verify	
   the	
   validity	
   of	
   this	
   cer_ficate	
  
based	
   on	
   the	
   validity	
   or	
   trustworthiness	
   of	
   the	
  
Cer_fica_on	
   Authority	
   (CA),	
   the	
   common	
   name	
  
and	
  the	
  expiry	
  date	
  of	
  the	
  cer_ficate.	
  Most	
  of	
  the	
  
browsers	
  implement	
  the	
  valida_on	
  logic	
  correctly	
  
but	
   the	
   non-­‐browser	
   applica_ons	
   which	
   use	
   SSL	
  
for	
   secure	
   communica_ons	
   rely	
   on	
   external	
  
libraries	
   for	
   implementa_on.	
   It	
   has	
   been	
   found	
  
that	
   most	
   of	
   these	
   implementa_ons	
   are	
   broken	
  
and	
   have	
   poten_al	
   vulnerabili_es[1,2]	
   which	
  
could	
  be	
  exploited	
  to	
  do	
  MITM	
  aeack	
  .	
  
In	
   this	
   poster,	
  we	
  describe	
   the	
   experimental	
   set-­‐	
  
up	
   to	
   conduct	
   such	
   an	
   aeack.	
  We	
   focus	
   on	
   two	
  
type	
  of	
  exploits	
  in	
  cer_ficate	
  valida_on	
  logic:-­‐	
  
•	
  When	
   the	
   cer_ficate	
   is	
   not	
   signed	
  by	
  a	
   trusted	
  
CA	
  
•	
  When	
  there	
  is	
  a	
  mismatch	
  in	
  cer_ficate	
  common	
  
name	
  (CN)	
  and	
  the	
  domain	
  accessed	
  by	
  the	
  client	
  

Figure	
  1:	
  Simplified	
  version	
  of	
  SSL	
  handshake[1]


