SSL certificate validation vulnerabilities in non-
browser applications

SSL(Secure Socket Layer) is a default standard for

secure communication on the internet. We
demonstrate that the SSL certificate validation is
broken in a lot of critical applications, especially
non-browser apps. Through a series of
experiments, we find out that some applications
do not use SSL at all while others implement the
server certificate validation incorrectly. As a
consequence, it is possible to do man-in-the-
middle(MITM) attack and steal important
information without much effort. We present our
experiment results for two apps from Google
playstore.

Introduction

SSL (or TLS) is a transport level protocol, originally
deployed in web browsers meant to provide
secure client-server communication over an
insecure channel. The protocol uses Public Key
Infrastructure to authenticate the parties involved
in communication and thereby, negotiating a
symmetric session key. As a part of the protocol
design, authenticating the server is a critical part
of the handshake procedure. A server presents its
public certificate to the client. The client is
supposed to verify the validity of this certificate
based on the validity or trustworthiness of the
Certification Authority (CA), the common name
and the expiry date of the certificate. Most of the
browsers implement the validation logic correctly
but the non-browser applications which use SSL
for secure communications rely on external
libraries for implementation. It has been found
that most of these implementations are broken
and have potential vulnerabilities[1,2] which
could be exploited to do MITM attack .

In this poster, we describe the experimental set-
up to conduct such an attack. We focus on two
type of exploits in certificate validation logic:-
 When the certificate is not signed by a trusted
CA

* When there is a mismatch in certificate common
name (CN) and the domain accessed by the client

target of our attacks

SSL Client SSL Server

client hello

Y

server hello

server cert.

client cert. request
(optional)

client key exchange

validate

server cert.

= validate
client cert.
(optional)

client cert. (optional)
change cipher spec

A

encrypted data

A
Y

Figure 1: Simplified version of SSL handshake[1]

Contact

1. David Soendoro, s146725@student.dtu.dk
2. Gu Min, s146723 @student.dtu.dk
3. Rohit Goyal, s146722 @student.dtu.dk

David Soendoro! ,Gu Min?,Rohit Goyal3

Technical University of Denmark

Methods and Materials

We set up a server side proxy on our system and
redirect our mobile traffic to this proxy. Once we
enable the proxy for SSL traffic interception, we
can see if the app accepts or rejects the SSL
server certificate generated by the proxy.

1

2 @ ©
— .

Web server
rightdomain.com

Mobile app Proxy server

1. Connect request to https://rightdomain.com
2. Proxy replying with certificate CN = rightdomain.com, CA=proxy.ca
3. GET request to rightdomain.com

Figure 2: Server certificate with untrusted CA

Another vector of compromise could be a
certificate with incorrect common name but
signed by a trusted CA. This was tested by DNS
poisoning the network, so that the traffic is
redirected to our server, which returns its own
certificate for all the requests made to external

Servers.

1 —

@

ourdomain.com

2 /=3 o
’ =]
Proxy server/DNS =r

Mobile app server rightdomain.com

. . X XXX
1. DNS request for https://rightdomain.com

2. DNS replying with y.y.y.y (DNS poisoning)

3. SSL certificate CN = ourdomain.com, CA=trusted.ca accepted
and GET request sent to rightdomain.com

Figure 3: Server certificate with incorrect
common hame

The following are the apparatus we need for this
experiment:

® Charles Proxy
® CA and server certificate generated by OpenSSL

We ran our first experiment with a major bank
application in Android. The request status was
complete and the certificate provided by the
proxy was accepted. This fault indicates the app
did not verify the validity of the certificate.
Consequently, the app started making API
requests to the server. This is a potential threat
because the intermediate proxy could read all the
request parameters as shown in Figure 4.

Second experiment is done with a digital wallet
application. The system is exploited using DNS
poisoning where the requested domain is
translated to 127.0.0.1 (localhost) instead of the
real IP address.

" Overview | Request | Response | Summary | Chart | Notes

bankCode 0
serviceld V7 GOXHHM

oSName android
platform android
applD SBIFreedom
appver 4.1.2

mdSPassword |a6d3f4b63fd3fc3ed32b05fddae05da2

httpconfigs { timeout : 50.0, }

shaPassword |77debd09e2267165d01189cfb2ca8a5a3d3f741d2fcd8f56328068d2b3d...
jSessionld
userName halo@halo.com
deviceName |SM-G900F
channel rc

servicelD LoginvalidateT
cacheid
ipAddress
platformver |6.0.GA v201502111432
iMEINumber 359877066100627

Figure 4: Request sent from client through proxy
for experiment 1

In this request, the client believes that the
certificate it gets from the fake server is a
legitimate certificate which actually is its own
certificate signed by trusted CA. Therefore the
client sends the login request to the fake server.
Response 404 (Not Found) is returned since the
fake server has no implementation of the request.
However, the request gets logged on the fake
server as shown in Figure 5.

[overview | Request | Response | Summary | Chart | Notes |

Name Value

URL https:/f /BOCustomerfappauth

Status Complete

Response Code 404 Not Found

Protocol HTTP/1.1

Method POST

Kept Alive No

Content-Type text/html; charset=is0-8859-1

Client Address /192,168.0.100

2 Remote Address /127.0.0.1

| ¢ Timing

; Request Start Time
Request End Time
Response Start Time
Response End Time

10/4/15 23:39:02
10/4/15 23:39:02
10/4/15 23:39:02
10/4/15 23:39:02

Duration 346 ms
DNS 2ms
Connect 1 ms
SSL Handshake 2ms
Request 0 ms
Response 1 ms
Latency 3 ms
Speed 2.02 KB/s

: Response Speed 436,52 KB/s

| ¢ size

: Request Header 156 bytes
Response Header 231 bytes
Request 114 bytes
Response 216 bytes
Total 717 bytes

Request Compression
Response Compression |-

|[overview | Request | Response | Summary | Chart | Notes
LOGINID Cg@fb

PASSWORD |b6361840ae3clle8b63b6081aal 268f6
WORDS 17976feb9d1e925189dae7e994478hbc8219f3060
PWDTYPE |0

Figure 5: Request sent from client through proxy
for experiment 2

Conclusion

It is quite common to see that SSL certificate validation
is completely broken in many critical non-browser
softwares. It is feasible for intruders to carry out the
MITM attack to the system which might result in
serious consequences. As the reasons leading to the
problem involve application developers along with SSL
library developers, it is fundamental for both sides to
develop a standardized implementation mechanism to
avoid all the possible weaknesses of SSL protocol in the
future. Besides, better analysis tools for discovering
errors in SSL should be developed in SSL connection
stage. More focus should be put on implementing
formal verification techniques and programming
language support for automatic checking of SSL
misusage in applications.

References

1. Georgiev, Martin, et al. "The most dangerous code in the world: validating SSL certificates in non-browser
software." Proceedings of the 2012 ACM conference on Computer and communications security. ACM, 2012.

2. Conti, Mauro, Nicola Dragoni, and Sebastiano Gottardo. "Mithys: Mind the hand you shake-protecting mobile
devices from ssl usage vulnerabilities." Security and Trust Management. Springer Berlin Heidelberg, 2013.

65-81.

© POSTER TEMPLATE BY GENIGRAPHICS® 1.800.790.4001 WWW.GENIGRAPHICS.CO

