The Problem	Why a problem?	The Solution	Conclusions	References
0 00 000		0 0000 00		

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

Daniel Bosk¹ Martin Kjellqvist² Sonja Buchegger¹

¹ KTH Royal Institute of Technology {dbosk,buc}@kth.se

² Mid Sweden University martin.kjellqvist@miun.se

NordSec'15, Stockholm, 20th October 2015

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0 00 000		0 0000 00		

Overview

1 What's the Problem?

- Background
- What we want to do?
- What part of the problem do we solve?

2 Why is this a problem?

- Because Eve has lots of power
- 3 How to solve this?
 - A Protocol
 - The Security of the Protocol
 - Implementation and Evaluation

4 Conclusions

Our Contributions

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0 00 000		0 0000 00		

Overview

1 What's the Problem?

- Background
- What we want to do?
- What part of the problem do we solve?

2 Why is this a problem?

- Because Eve has lots of power
- 3 How to solve this?
 - A Protocol
 - The Security of the Protocol
 - Implementation and Evaluation

4 Conclusions

Our Contributions

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

3

The Problem	Why a problem?	The Solution	Conclusions	References
• 00 000		0 0000 00		
Background				

Modern Surveillance

- We've learned a lot about modern surveillance states since 2013.
 - Tapping fibre-optic cables [4]
 - Storing all intercepted data [1]
 - Search [2] and visualization [3] capabilities of intercepted data.

 Basically they build an Internet-wide transcript of all communications.

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

KTH/MIUN

• = • •

The Problem	Why a problem?	The Solution	Conclusions	References
• 00 000		0 0000 00		
Background				

Modern Surveillance

- We've learned a lot about modern surveillance states since 2013.
 - Tapping fibre-optic cables [4]
 - Storing all intercepted data [1]
 - Search [2] and visualization [3] capabilities of intercepted data.
- Basically they build an Internet-wide transcript of all communications.

The Problem ○ ●○ ○○○	Why a problem? 000	The Solution 0 0000	Conclusions 000	References
What we want to do?				

What we want to do?

- Alice and Bob communicate.
- Eve records everything.
- Eve forces Alice to give her a key to decrypt the transcripts.
- Alice doesn't like this.
- Alice wants to give Eve a key $k' \neq k$ such that $\text{Dec}_{k'}(c) = m'$.

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0 ●0 000		0 0000 00		
What we want to do?				

What we want to do?

- Alice and Bob communicate.
- Eve records everything.
- Eve forces Alice to give her a key to decrypt the transcripts.
- Alice doesn't like this.
- Alice wants to give Eve a key $k' \neq k$ such that $\text{Dec}_{k'}(c) = m'$.

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0 ●0 000		0 0000 00		
What we want to do?				

What we want to do?

- Alice and Bob communicate.
- Eve records everything.
- Eve forces Alice to give her a key to decrypt the transcripts.
- Alice doesn't like this.
- Alice wants to give Eve a key $k' \neq k$ such that $\text{Dec}_{k'}(c) = m'$.

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem ○ ○● ○○○	Why a problem? 000	The Solution 0 0000 00	Conclusions 000	References
What we want to do?				
Popular PE	Ts			

GNU Privacy Guard (GPG), Off-the-Record (OTR), TextSecure, . . .

- GPG has no claimed deniability.
- OTR and TextSecure has Perfect Forward-Secrecy (PFS).
- This requires "innocent until proven otherwise".
- What if we're "guilty until proven otherwise"?

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0 00 000		0 0000 00		
What we want to do	?			
Popular PL				

- GNU Privacy Guard (GPG), Off-the-Record (OTR), TextSecure, ...
- GPG has no claimed deniability.
- OTR and TextSecure has PFS.
- This requires "innocent until proven otherwise".
- What if we're "guilty until proven otherwise"?

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0 00 000		0 0000 00		
What we want to do	o?			
Popular Pl	FTs			

- GNU Privacy Guard (GPG), Off-the-Record (OTR), TextSecure, ...
- GPG has no claimed deniability.
- OTR and TextSecure has PFS.
- This requires "innocent until proven otherwise".
- What if we're "guilty until proven otherwise"?

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0 000		0000		
What we want to do	?			
Popular PF	Ts			

- GNU Privacy Guard (GPG), Off-the-Record (OTR), TextSecure, ...
- GPG has no claimed deniability.
- OTR and TextSecure has PFS.
- This requires "innocent until proven otherwise".
- What if we're "guilty until proven otherwise"?

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0 00 ●00		0 0000 00		
What part of the pro	blem do we solve?			

How do we go about?

- A public channel, e.g. the Internet.
- A private channel, e.g. Near-Field Communication (NFC).

< 口 > < 同

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0 00 0●0		0 0000 00		
What part of the pr	oblem do we solve?			

- Eve records everything in the public channel.
- She also stores this indefinitely.
- But Eve cannot record anything in the private channel.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0 00 0●0		0 0000 00		
What part of the pro	blem do we solve?			

- Eve records everything in the public channel.
- She also stores this indefinitely.
- But Eve cannot record anything in the private channel.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0 00 00		0 0000 00		
What part of the pr	oblem do we solve?			
What can	Eve do?			

- In related works, Eve has had the role of prosecutor.
- She has to convince a third-party judge.
- In our model, Eve is both prosecutor and judge.
- Which is more the case in some surveillance states.
- There is a formal definition of this in the paper

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0 00 00		0 0000 00		
What part of the pro	oblem do we solve?			
What can	Eve do?			

- In related works, Eve has had the role of prosecutor.
- She has to convince a third-party judge.
- In our model, Eve is both prosecutor and judge.
- Which is more the case in some surveillance states.
- There is a formal definition of this in the paper

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0 00 00●		0 0000 00		
What part of the pro	oblem do we solve?			

What can Eve do?

- In related works, Eve has had the role of prosecutor.
- She has to convince a third-party judge.
- In our model, Eve is both prosecutor and judge.
- Which is more the case in some surveillance states.
- There is a formal definition of this in the paper

The Problem	Why a problem?	The Solution	Conclusions	References
0 00 000		0 0000 00		

Overview

. What's the Problem?

- Background
- What we want to do?
- What part of the problem do we solve?

2 Why is this a problem?

- Because Eve has lots of power
- 3 How to solve this?
 - A Protocol
 - The Security of the Protocol
 - Implementation and Evaluation

4 Conclusions

Our Contributions

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References	
	•00				
00		0000			
000		00			
Because Eve has lots of power					

Verifying who sent what

Eve has a transcript of all that has happened on the network

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References	
	000				
00		0000			
000		00			
Because Eve has lots of power					

Verifying encryption keys

■ Alice says she used key k'.

Eve computes $MAC_{H_M(k')}(c) \neq t = MAC_{H_M(k)}(c)$ and says: No, you didn't.

3 →

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References	
	000				
00		0000			
000		00			
Because Eve has lots of power					

Verifying encryption keys

- Alice says she used key k'.
- Eve computes MAC_{H_M(k')}(c) ≠ t = MAC_{H_M(k)}(c) and says: No, you didn't.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0	000	0		
000		0000		
Because Eve has lots of	power			

How hard is deniability?

Given m', c

 find x such that Enc_x(m') = c.

 Given c, x as above, y such that MAC_y(c) = t,

 find k' such that H_E(k') = x and H_M(k') = y.

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

KTH/MIUN

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Problem o oo ooo	Why a problem? ○○●	The Solution 0 0000 00	Conclusions 000	References
Because Eve has lots of	power			

How hard is deniability?

Given m', c

 find x such that Enc_x(m') = c.

 Given c, x as above, y such that MAC_y(c) = t,

 find k' such that H_E(k') = x and H_M(k') = y.

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0 00 000		0 0000 00		

Overview

. What's the Problem?

- Background
- What we want to do?
- What part of the problem do we solve?

2 Why is this a problem?

Because Eve has lots of power

3 How to solve this?

- A Protocol
- The Security of the Protocol
- Implementation and Evaluation

4 Conclusions

Our Contributions

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

Figure: Keys K_A , K_B . Ciphertext c = Enc(m). MAC-tag t = MAC(c). c', t' correspondingly.

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
0 00 000		○ ●○○○ ○○		
The Security of the Prot	cocol			

Define: Eve (formally).

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

KTH/MIUN

Э

The Problem	Why a problem?	The Solution	Conclusions	References
		0		
00		0000		
The Security of the I	Protocol			

A rough outline

Show: Deniable Encryption \circ Encrypt-then-MAC \implies Deniable Encryption

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

KTH/MIUN

・ロト ・同ト ・ヨト ・ヨト

The Problem	Why a problem?	The Solution	Conclusions	References
0		0		
000		0000		
The Security of the I	Protocol			
A rough or	utline			

• Assume a stateful deniable authenticated encryption scheme.

- Show: such scheme gives Eve negligible advantage.
- Show: such scheme yields IND-SFCCA (indistinguishability under stateful chosen ciphertext attack).

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

KTH/MIUN

3 🖌 🖌 3

The Problem	Why a problem?	The Solution	Conclusions	References
0		0		
000		0000		
The Security of the I	Protocol			
A rough or	utline			

- Assume a *stateful deniable authenticated encryption scheme*.
- Show: such scheme gives Eve negligible advantage.
- Show: such scheme yields IND-SFCCA (indistinguishability under stateful chosen ciphertext attack).

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem	Why a problem?	The Solution	Conclusions	References
		0		
000		0000		
The Security of the	Protocol			
A rough o	utling			

- Assume a stateful deniable authenticated encryption scheme.
- Show: such scheme gives Eve negligible advantage.
- Show: such scheme yields IND-SFCCA (indistinguishability under stateful chosen ciphertext attack).

ຽ

The Problem	Why a problem?	The Solution	Conclusions	References
0		0		
000		0000		
The Security of the	Protocol			

- Define: stateful OTP.
- Show: stateful OTP \implies IND-SFCCA.
- Define: stateful MACs.
- Show: stateful MACs => INT-SFCTXT (integrity for stateful ciphertexts).

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

KTH/MIUN

(日) (同) (三) (三)

The Problem	Why a problem?	The Solution	Conclusions	References
0		0		
000		0000		
The Security of the I	Protocol			
	1 A A A A A A A A A A A A A A A A A A A			

- Define: stateful OTP.
- Show: stateful OTP \implies IND-SFCCA.
- Define: stateful MACs.
- Show: stateful MACs stateful ciphertexts).

프 문 문 프 문

The Problem 0 00 000	Why a problem? 000	The Solution ○ ○○○○ ●○	Conclusions	References			
Implementation and	Implementation and Evaluation						
One-Time	Pad, practically	y feasible?					

How much random data do we need for everyday messaging?

- How long does it take to transfer using NFC?
- How difficult is it to generate this data? Will it drains the phone's battery?

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem 0 00 000	Why a problem? 000	The Solution ○ ○○○○ ●○	Conclusions	References			
Implementation and	Implementation and Evaluation						
One-Time	Pad, practically	y feasible?					

- How much random data do we need for everyday messaging?
- How long does it take to transfer using NFC?
- How difficult is it to generate this data? Will it drains the phone's battery?

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem 0 00	Why a problem?	The Solution	Conclusions 000	References		
Implementation and Evaluation						
One-Time	Pad practically	y feasible?				

- How much random data do we need for everyday messaging?
- How long does it take to transfer using NFC?
- How difficult is it to generate this data? Will it drains the phone's battery?

The Problem	Why a problem?	The Solution	Conclusions	References
0 00		0 0000		
		00		
Implementation and	Evaluation			

How practical?

Freq	Time	Key-material ($ m KiB$)
Daily	$5 \mathrm{s}$	283 KiB
Weekly	$38 \mathrm{\ s}$	2 MiB
Monthly	$3 \min$	8 MiB
Bimonthly	$5 \min$	17 MiB
Annually	$33 \min$	$101 { m MiB}$

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

KTH/MIUN

æ

(日) (四) (王) (王)

o 000 00 000	0 0000 00	

Overview

. What's the Problem?

- Background
- What we want to do?
- What part of the problem do we solve?

2 Why is this a problem?

- Because Eve has lots of power
- 3 How to solve this?
 - A Protocol
 - The Security of the Protocol
 - Implementation and Evaluation

4 Conclusions

Our Contributions

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

The Problem o oo ooo	Why a problem? 000	The Solution 0 0000 00	Conclusions ●○○	References
Our Contributions				

- We assume a stronger adversary model.
- We show that OTR-like protocols are not fully deniable.
- We outline the properties needed for a fully deniable protocol.
- We design a protocol with a superset of the properties of Off-the-Record (OTR):
 - authenticated,
 - yet with deniable encryption, and
 - perfectly secret.
- The protocol is based on the OTP.
- We show that the key-exchange is feasible.

KTH/MIUN

< ∃ > <

The Problem	Why a problem?	The Solution	Conclusions	References
0		0	● 00	
00		0000		
Our Contributions				

- We assume a stronger adversary model.
- We show that OTR-like protocols are not fully deniable.
- We outline the properties needed for a fully deniable protocol.
- We design a protocol with a superset of the properties of OTR:
 - authenticated,
 - yet with deniable encryption, and
 - perfectly secret.
- The protocol is based on the OTP.
- We show that the key-exchange is feasible.

KTH/MIUN

• = • •

The Problem	Why a problem?	The Solution	Conclusions	References
			● 00	
00		0000		
Our Cantributiana				
Our Contributions				

- We assume a stronger adversary model.
- We show that OTR-like protocols are not fully deniable.
- We outline the properties needed for a fully deniable protocol.
- We design a protocol with a superset of the properties of OTR:
 - authenticated,
 - yet with deniable encryption, and
 - perfectly secret.
- The protocol is based on the OTP.
- We show that the key-exchange is feasible.

KTH/MIUN

The Problem	Why a problem?	The Solution	Conclusions	References
			● 00	
00		0000		
Our Cantributiana				
Our Contributions				

- We assume a stronger adversary model.
- We show that OTR-like protocols are not fully deniable.
- We outline the properties needed for a fully deniable protocol.
- We design a protocol with a superset of the properties of OTR:
 - authenticated,
 - yet with deniable encryption, and
 - perfectly secret.
- The protocol is based on the OTP.
- We show that the key-exchange is feasible.

The Problem	Why a problem?	The Solution	Conclusions	References
0		0	000	
000		0000		
Our Contributions				

- Streaming not possible using NFC.
- The API requires files to be transferred.
- These files have to reside in the publicly accessible file system.

The Problem o oo ooo	Why a problem? 000	The Solution 0 0000 00	Conclusions ○●○	References
Our Contributions				

- Streaming not possible using NFC.
- The API requires files to be transferred.
- These files have to reside in the publicly accessible file system.

The Problem	Why a problem?	The Solution	Conclusions	References
			000	
00		0000		
000		00		
Our Contributions				

Questions?

Daniel Bosk <dbosk@kth.se>, et al.

Towards Perfectly Secure and Deniable Communication Using an NFC-Based Key-Exchange Scheme

æ

KTH/MIUN

(日) (四) (王) (王)

The Problem	Why a problem?	The Solution	Conclusions	References
0	000	0 0000	000	
Our Contributions				

- Greenberg, A.: Leaked NSA Doc Says It Can Collect And Keep Your Encrypted Data As Long As It Takes To Crack It. Forbes (2013)
- 2. Greenwald, G.: XKeyscore: NSA tool collects 'nearly everything a user does on the internet'. The Guardian (2013)
- 3. Greenwald, G., MacAskill, E.: Boundless Informant: the NSA's secret tool to track global surveillance data. The Guardian (2013)
- MacAskill, E., Borger, J., Hopkins, N., Davies, N., Ball, J.: GCHQ taps fibre-optic cables for secret access to world's communications. The Guardian (2013)

KTH/MIUN

(日) (同) (三) (三)