
Guaranteeing	Dependency	
Enforcement	in	So5ware	Updates		

Luigi	Catuogno1,	Clemente	Galdi2	and	Giuseppe	Persiano1	
1Università	di	Salerno	

2Università	di	Napoli	“Federico	II”	



Outline	

•  MoIvaIng	scenario	
•  So5ware	update	models	
•  The	proposed	soluIon	
•  More	complex	scenarios	
–  Improved	soluIons	and	limitaIons	

	



MoIvaIng	Scenario	

•  A	flock	of	drones	is	accomplishing	a	mission	
•  Some	of	the	drones’	missions	needs	to	be	
reconfigured	automaIcally	by	the	Central/Regional	
OperaIons	Office.	

•  The	set	of	drones	to	be	reconfigured	depend	on	their	
configuraIon/status.	
–  Availability	of	specific	tools/weapons	
–  Fuel	level	
–  Role	in	the	current	mission	



Underlying	requirements	

•  On-the-fly	mission	reconfiguraIon	
–  No	human	intervenIon/authorizaIon	
– Mission	specificaIon	is	a	sensiIve	informaIon!	

•  Drones	might	be	captured	
–  Exposed	material	should	not	compromise	future	missions	

•  No	or	minimal	hardware	support	for	security		



So5ware	Update	scenario	

•  Hardware	components	are	specified	by	means	of	
so/ware	modules	(drivers)	

•  Missions	are	specified	by	means	of	so/ware	modules	
•  Drones’	selec5on	is	defined	by	the	installa5on	policy	
–  A	mission	can	be	installed	if	and	only	if	the	configura5on	

meets	the	installa5on	policy!	

•  Updates	might	be:	
–  Human	assisted:	InstallaIon	of	new	hardware	component	
–  AutomaIc:	On-the-fly	mission	reconfiguraIon.		
	



ExisIng	soluIons	

•  Different	so5ware	update	models/systems	are	
available:	
–  Centralized	a-la	iOS	
–  Semi-decentralized:	Android	
–  Fully	distributed:	Linux	

•  Different	tools	to	secure	updates:	
–  AuthenIcaIon:	Package	Signature,	Code	Signing	
–  ConfidenIality:	Channel	encrypIon	
–  Dependency	enforcement:	opIonal!	



The	Actors:	Linux	philosophy	

•  (MulIple)	DistribuIon	Server:	Trusted	component	
–  Produces	properly	forma`ed	so5ware	packages	

•  Mirror	Server:	Untrusted	component	
–  Used	by	the	DS	to	distribute	so5ware	packages	

•  Device:	ParIally	trusted	
–  If	captured	discloses	key	material	

•  The	adversary	
–  Controls	the	communicaIon	channel	
–  Has	full	access	to	captured	devices.		



UpdaIcator	[ABCSS14]	

•  Idea:	Each	device	is	idenIfied	by	sta5c	aAributes	
–  O.S.,	CPU	Type,	Speed,	etc.		

•  Uses	CP-ABE	to	protect	so5ware	confidenIality		
–  InstallaIon	policy	is	embedded	in	the	ciphertext	
–  Each	device	holding	the	proper	set	of	a`ributes	can	decrypt	the	

so5ware	and	install	it.	

•  Problem:	A`ributes	updates	requires	one	of	the	following:	
–  Existence	of	a	single	centralized	key	authority	
–  Complete	system	profiling	(transfer	of	all	keys	to	an	update	authority)	
–  InteracIve	protocol	for	key	updates.	



Our	requirements	

•  A`ributes	are	dynamic	in	nature	
–  Each	new	installed	so5ware	enhances	the	device	with	a	
new	a`ribute	

•  MulIple	‘key’	generaIon	authoriIes	
–  Each	device	might	install	so5ware	from	different	vendors	

•  Non-interacIve	key-updates	
•  Enforce	installaIon	policy	in	a	“strong	sense”	
–  It	is	not	possible	to	bypass	it	

•  Typical	security	requirements	
–  So5ware	authenIcity,	integrity,	confidenIality	and	freshness	



A	hidden	assumpIon	

If	a	package	A	depends	on	package	B,	the	

so/ware	vendor	has	already	installed	package	B	

– Otherwise,	how	can	the	vendor	test	so5ware	A	?	
– When	the	package	is	being	assembled,	the	vendor	
knows	the	aAributes	of	all	the	required	packages.			



The	idea	

•  Each	so5ware	has	two	associated	random	keys	
–  An	encrypIon	key,	used	to	encrypt	it	
–  A	package	key,	the	‘a`ribute	key’	

•  Package	creaIon:	
–  Encrypt	(so5ware,	package	key)	using	the	encrypIon	key	
–  Share	encrypIon	key	using	the	installaIon	policy	as	an	access	

structure.	
–  Encrypt	share	for	‘so5ware	j’	with	the	package	key	of	so5ware	j.	

•  InstallaIon	is	possible	iff	the	set	of	installed	packages	saIsfies	
the	installaIon	policy.		



The	Package	creaIon	protocol	

1.  Generate	a	random	encryp5on	key	r		

2.  (s1,...,sm)←Distribute(r,Aφ)		
3.  For	j=1	to	m	do		
4.  	 	ej	←Encryptkj(sj)	
5.  Generate	a	random	package	key	k		

6.  Package	p	=	(name,	Imestamp,		∆,	metatada,	package	key	k	,so5ware)		
7.  E	←	⟨⟨(n1,e1),...,(nm,em)⟩,Aφ,Encryptr(p)⟩		
8.  ME	←CreateMetaData(n,	t,	∆,	Ms	,	E	)		
9.  σM	←SignSkV	(ME)		
10.  σ	←SignSkV	(E)		
11.  Send	(E,	σ),	(ME	,	σM	)	to	Mirror	Servers		



Package	InstallaIon	1/2	

Obtain (E,σ)  and (ME,σM)  (possibly from different servers) 
/* Authenticity, Integrity and Freshness Verification */  
1.  if (VerifyPkV (E,σ) = �)�(VerifyPkV (ME,σM) = �)  

then Reject  
2.  if (E does not Match ME) � (ME Not Fresh)  

then Reject  
 
/* Decryption Key Reconstruction */  
1.  Parse E as ⟨((n1, e1), . . . , (nm, em)), Aφ,Encryptk(p)⟩  
2.  for i = 1,...,m do  

if (ni,ki)�Installed Packages then   si =Decryptki(ei)  
else  si = �  

3.  r←Reconstruct(Aφ , (s1 , . . . , sn )) 



Package	InstallaIon	2/2	

/* Software Installation and Key Database update */  
1. p ←Decryptr(E) 
2. Ms ←ExtractMetadata(ME ) 

if (p ̸= �) � (p matches Ms) then  
  Parse p as (n,t,∆,Ms,k,s)  
  Install s 
  Add (n,k)  to the set of Installed Packages 



Security	ProperIes	

•  ConfidenIality:	guaranteed	by	package	
encrypIon	

•  Integrity,	AuthenIcity:	Enforced	using	standard	
tools	
– Hash	funcIons,	signatures,	cerIficates…	

•  Freshness:	Defined	by	the	so5ware	vendor	
•  Policy	enforcement:	guaranteed	by	impossibility	
of	decrypIng	the	package	without	the	knowledge	
of	the	proper	keys.	

	



Advantages	

•  Each	package	brings	its	own	a`ribute,	the	
package	key.	

•  A`ributes’	updates	are	executed	non-
interacIvely	
– “Save	the	package	key”.	

•  	MulIple-vendor	updates	are	possible.		



More	complex	scenarios	

•  What	if	the	installaIon	policy	is	not	
monotone	?		
– So5ware	policies	contain	the	‘conflict’	clause	
– Only	monotone	access	structures	are	possible	for	
secret	sharing	schemes!	

		
#packages	 #packages	with	conflicts	 Percentage	

CentOs	 8652	 377	 4,4%	
RHEL	7.1	 4432	 299	 6,7%	
openSUSE	13.2	 5334	 242	 4,5%	
Fedora	21	 2477	 127	 5,1%	



More	complex	scenarios	

•  What	if	installaIon	policy	itself	is	sensiIve	?		
– Our	first	soluIon	assumes	the	access	structure	to	
be	transferred	in	clear	to	the	device	



The	Package	creaIon	protocol	

1.  Generate	a	random	encryp5on	key	r		

2.  (s1,...,sm)←Distribute(r,Aφ)		
3.  For	j=1	to	m	do		
4.  	 	ej	←Encryptkj(sj)	
5.  Generate	a	random	package	key	k		

6.  Package	p	=	(name,	Imestamp,		∆,	metatada,	package	key	k	,so5ware)		
7.  E	←	⟨⟨(n1,e1),...,(nm,em)⟩,Aφ,Encryptr(p)⟩		
8.  ME	←CreateMetaData(n,	t,	∆,	Ms	,	E	)		
9.  σM	←SignSkV	(ME)		
10.  σ	←SignSkV	(E)	
11.  Send	(E,	σ),	(ME	,	σM	)	to	Mirror	Servers		



Policy	(ParIal)	Hiding	Protocol	

•  The	vendor	locally	anonymizes	package	names	
and	policy	
– Arbitrarily	maps	each	package	name	to	an	integer.	
– Describes	installaIon	policy	in	DNF	over	the	set	of	
anonymized	package	names	



Policy	(ParIal)	Hiding	Protocol	

•  At	installaIon	Ime	
– For	each	clause	in	the	DNF	formula	tries	to	
decrypt	each	share	using	the	keys	in	the	local	DB	

– Gets	the	key	when	it	succeeds	in	decrypIng	all	the	
shares	in	a	clause	
•  Depends	on	the	number	of	packages	installed	on	the	
device!	



Policy	(ParIal)	Hiding	Protocol	

•  In	theory	anonymity	comes	to	at	a	huge	price:	
efficiency	
–  A	DNF	formula	might	be	exponenIally	longer	than	a	
compact	representaIon	

–  The	device	needs	to	blindly	search	in	the	proper	key.	
•  In	pracIce	the	impact	might	be	affordable		
–  DNF	expansion	is	due	to	mulIple	version		
–  On	average	the	DNF	formula	is	25	Ime	larger	than	
‘compact’	representaIon	



Conclusions	

•  Presented	a	system	that	allows	the	enforcement	of	
installaIon	policies	during	so5ware	installaIon/
updates	
– MulIple	independent	vendors		
–  Non-interacIve	key	updates	
–  InstallaIon	policies	depend	on	staIc	properIes,	e.g.,	
installed	packages	

•  Presented	an	extension	for	parIally	hiding	policies	
•  Started	evaluaIng	the	performance	of	the	scheme	



Future	Work	

•  Allow	dynamic	policies	
– Depending	on	‘fuel	level’,	‘current	posiIon’	

•  Consider	non-monotone	installaIon	policies	
•  Reduce	the	impact	of	anonymizaIon	for	the	
installaIon	phase.		


