Guaranteeing Dependency
Enforcement in Software Updates

Luigi Catuogno®, Clemente Galdi? and Giuseppe Persiano

1

2

Outline

* Motivating scenario

e Software update models
* The proposed solution

* More complex scenarios

— Improved solutions and limitations

Motivating Scenario

* Aflock of drones is accomplishing a mission

 Some of the drones’ missions needs to be
reconfigured automatically by the Central/Regional
Operations Office.

* The set of drones to be reconfigured depend on their
configuration/status.

— Availability of specific tools/weapons
— Fuel level

— Role in the current mission

S
47 s A @)
< i
o RN A
&
[]

Underlying requirements

* On-the-fly mission reconfiguration

— No human intervention/authorization

— Mission specification is a sensitive information!
* Drones might be captured

— Exposed material should not compromise future missions

* No or minimal hardware support for security

Software Update scenario

 Hardware components are specified by means of
software modules (drivers)

* Missions are specified by means of software modules

* Drones’ selection is defined by the installation policy

— A mission can be installed if and only if the configuration
meets the installation policy!

* Updates might be:
— Human assisted: Installation of new hardware component
— Automatic: On-the-fly mission reconfiguration.

75

&5 23 R
&7 LS B
L g 18
R
A
NREER)
B 4

DRl

¢ []

Existing solutions

» Different software update models/systems are
available:

— Centralized a-la iOS
— Semi-decentralized: Android
— Fully distributed: Linux

* Different tools to secure updates:

— Authentication: Package Signature, Code Signing
— Confidentiality: Channel encryption
— Dependency enforcement: optionall

UNI
NA

The Actors: Linux philosophy

(Multiple) Distribution Server: Trusted component
— Produces properly formatted software packages

* Mirror Server: Untrusted component
— Used by the DS to distribute software packages

e Device: Partially trusted
— If captured discloses key material
* The adversary

— Controls the communication channel
— Has full access to captured devices.

7
AF SR 2
S
% Bl 'A’ Q)
s o

Updaticator [ABCSS14]

Idea: Each device is identified by static attributes
— 0.S,, CPU Type, Speed, etc.

Uses CP-ABE to protect software confidentiality

— Installation policy is embedded in the ciphertext

— Each device holding the proper set of attributes can decrypt the
software and install it.

Problem: Attributes updates requires one of the following:
— Existence of a single centralized key authority

— Complete system profiling (transfer of all keys to an update authority)
— Interactive protocol for key updates.

Our requirements

* Attributes are dynamic in nature

— Each new installed software enhances the device with a
new attribute

* Multiple ‘key’ generation authorities
— Each device might install software from different vendors
* Non-interactive key-updates
* Enforce installation policy in a “strong sense”
— It is not possible to bypass it
* Typical security requirements

— Software authenticity, integrity, confidentiality and freshness

PE
Y 1B A

BB 9
Ny
ey)

A hidden assumption

If a package A depends on package B, the
software vendor has already installed package B

— Otherwise, how can the vendor test software A ?

— When the package is being assembled, the vendor
knows the attributes of all the required packages.

The idea

* Each software has two associated random keys
— An encryption key, used to encrypt it
— A package key, the ‘attribute key’

* Package creation:
— Encrypt (software, package key) using the encryption key

— Share encryption key using the installation policy as an access
structure.

— Encrypt share for ‘software j” with the package key of software j.

* Installation is possible iff the set of installed packages satisfies
the installation policy.

< IDIEUNI
d T o NPAN

The Package creation protocol

Generate a random encryption key r
(S1,---,Sm) € Distribute(r,A)
For j=1 to m do

e, &Encrypt,(s;)

Package p = (name, timestamp, A, metatada, package key k ,software)
E < ({(ny,e4),....(n.e00,AyEncrypt (p)
M. <-CreateMetaData(n, t, A, M, , E)
. Oy €Signg,, (Mg)
10. o <Signgy (E)
11. Send (E, o), (M, o,) to Mirror Servers

1
2
3
4
5. Generate a random package key k
6
7/
8
9

DIE| [$ANI
IRRIN A

Package Installation 1/2

Obtain (E,o) and (Mg,0,,) (possibly from different servers)
/* Authenticity, Integrity and Freshness Verification */
1. if (Verifypy (E,0) = L)V (Verifypy Mg,04,) = L)
then Reject
2. if (E does not Match M) V (Mg Not Fresh)
then Reject

/* Decryption Key Reconstruction */
1. Parse E as (((n}, ¢)), . . ., (n,, €,)), A,Encrypt,(p)
2. fori=1,...mdo
if (n,k,) EInstalled Packages then s, =Decrypt,.(€;)
else s; = 1
3. r<—Reconstruct(A,, (s;,...,8,))

'Fj
o
Y 1O 2

&7 LS B Dl E U N I
o i 19

el
% \;‘_' :“3 Q)
AT &
& [J

Package Installation 2/2

/* Software Installation and Key Database update */
1. p «Decrypt (E)
2. M, «ExtractMetadata(Mg,)
if (p&~ L) A (p matches M,) then
Parse p as (n,t,A,M_k;s)
Install s
Add (n,k) to the set of Installed Packages

Security Properties

Confidentiality: guaranteed by package
encryption

Integrity, Authenticity: Enforced using standard
tools

— Hash functions, signatures, certificates...
Freshness: Defined by the software vendor

Policy enforcement: guaranteed by impossibility
of decrypting the package without the knowledge
of the proper keys.

TEE
g’" Ao D
& JLT‘;/ S8
Bl et S
& Tl 5
ey e

Advantages

* Each package brings its own attribute, the
package key.

e Attributes’ updates are executed non-
interactively

— “Save the package key”.
 Multiple-vendor updates are possible.

UNI
NA

More complex scenarios

 What if the installation policy is not
monotone ?

— Software policies contain the ‘conflict’ clause

— Only monotone access structures are possible for
secret sharing schemes!

#packages #pasl;z:\giecst\slvlth Percentage
CentOs 8652 377 4,4%
RHEL 7.1 4432 299 6,7%
openSUSE 13.2 5334 242 4,5%
Fedora 21 2477 127 5,1%

More complex scenarios

 What if installation policy itself is sensitive ?

— QOur first solution assumes the access structure to
be transferred in clear to the device

The Package creation protocol

Generate a random encryption key r
(S1,---,Sm) € Distribute(r,A)
For j=1 to m do
e, &Encrypt,(s;)
Generate a random package key k
Package p = (name, timestamp, A, metatada, package key k ,software)

@(nl,el),...,@wchptr(p)>
M, <CreateMetaData(n, t, A, M, , E)
oy € Signg,y (Mg)

10. o <Signgy (E)
11. Send (E, o), (M, o,) to Mirror Servers

O 0 N O U B WD R

UNI
NA

Policy (Partial) Hiding Protocol

 The vendor locally anonymizes package names
and policy
— Arbitrarily maps each package name to an integer.

— Describes installation policy in DNF over the set of
anonymized package names

Policy (Partial) Hiding Protocol

e At installation time

— For each clause in the DNF formula tries to
decrypt each share using the keys in the local DB

— Gets the key when it succeeds in decrypting all the
shares in a clause

* Depends on the number of packages installed on the
device!

UNI
NA

Policy (Partial) Hiding Protocol

* |In theory anonymity comes to at a huge price:
efficiency
— A DNF formula might be exponentially longer than a
compact representation

— The device needs to blindly search in the proper key.

* In practice the impact might be affordable
— DNF expansion is due to multiple version

— On average the DNF formula is 25 time larger than
‘compact’ representation

UNI
NA

Conclusions

* Presented a system that allows the enforcement of
installation policies during software installation/
updates

— Multiple independent vendors
— Non-interactive key updates

— Installation policies depend on static properties, e.g.,
installed packages

* Presented an extension for partially hiding policies
e Started evaluating the performance of the scheme

7
AF SR 2

S
% Bl 'A’ Q)
s o

Future Work

* Allow dynamic policies

— Depending on ‘fuel level’, ‘current position’
* Consider non-monotone installation policies

 Reduce the impact of anonymization for the
installation phase.

