

ROYAL INSTITUTE OF TECHNOLOGY

Study on Smart Meter Privacy

Zuxing Li and Tobias J. Oechtering

School of Electrical Engineering and the ACCESS Linnaeus Centre

KTH Royal Institute of Technology, Stockholm, Sweden

{zuxing,oech@kth.se}

1 Motivation

Smart grid

- Monitor the grid more granularly.
- Predicate demand; detect failure; and adapt pricing.
- A more adaptive, reliable, and efficient grid

Smart meter

3 Use an Infinite-Capacity Energy Storage Device

State of arts

• Encryption

- Do not work in the case of having inner threats.

• Distortion

- Distort the energy supply from energy demand profile.
- Use alternative energy sources or energy storage devices.
- Information theoretic objective to maximize adversary uncertainty about the energy demand profile [1, 2, 3, 4, 6, 7]
- Online algorithm to flatten smart meter readings [5]
- Belief state MDP formulation [6, 7, 9]
- Detection theoretic objectives [8, 9]

2 Belief State MDP Formulation

Settings

- Binary hypothesis
- "Ideal" infinite-capacity energy storage device
- Instantaneous demand x_t is always satisfied.
- -Asymptotic balance: $\lim_{n\to\infty} \sum_{t=1}^{n} (x_t y_t) = 0, \forall h$
- Law of large numbers leads to average energy supply constraints:

 $E(Y|H = h_0) = f_0; E(Y|H = h_1) = f_1.$

- Control strategy: $p_{Y_t|X_t,H}$
- Markov property:

 $p_{X_{t+1},Y_{t+1}|X^t,Y^t,H} = p_{Y_{t+1}|X_{t+1},H} \cdot p_{X_{t+1}|H}$

- Assumptions on the adversary
- Informed and greedy adversary
- Neyman-Pearson hypothesis testing model of adversary behavior:

 $p_{\hat{H}|H}^{\min}(h_0|h_1) = \min p_{\hat{H}|H}(h_0|h_1), \text{ s.t. } p_{\hat{H}|H}(h_1|h_0) \le \phi$

- Asymptotic measure of privacy leakage risk
- Chernoff-Stein Lemma: The Kullback-Leibler divergence $D(p_{Y|H=h_0}||p_{Y|H=h_1})$ is the asymptotic exponential decay rate of $p_{\hat{H}|H}^{\min}(h_0|h_1)$.
- \bullet Privacy leakage metric: $r_{\mathrm{II}}^* = \mathrm{D}(p_{Y|H=h_0}||p_{Y|H=h_1})$
- -Reducing r_{II}^* means that the adversary needs more observations to achieve a certain value of $p_{\hat{H}|H}^{\min}(h_0|h_1)$ from an asymptotic perspective.

Settings

• Control strategy: $p_{Y_t|X_t,Z_t}$ under a constraint $z_t - z_{t+1} + y_t = x_t$ • Markov property:

 $P_{H_{t+1},X_{t+1},Z_{t+1},Y_{t+1}|H^t,X^t,Z^t,Y^t} = p_{Y_{t+1}|X_{t+1},Z_{t+1}} \cdot p_{X_{t+1}|H_{t+1},X_t} \cdot p_{Z_{t+1}|X_t,Z_t} \cdot p_{H_{t+1}|H_t}$

• Instantaneous privacy leakage:

$$r_{t} = \sum_{y_{t}} \left\{ \min_{\hat{h}_{t}} \sum_{h_{t}, x_{t}, z_{t}} c(\hat{h}_{t}, h_{t}) p_{Y_{t}|X_{t}, Z_{t}}(y_{t}|x_{t}, z_{t}) p_{H_{t}, X_{t}, Z_{t}}(h_{t}, x_{t}, z_{t}) \right\}$$

Informed and greedy adversaryBayesian detection model of adversary behavior

Belief state MDP elements

• State: $s_t = (h_t, x_t, z_t)$

• Belief state: $b_t = p_{H_t, X_t, Z_t}$

- Action: $a_t = p_{Y_t|X_t,Z_t}$
- Reward: $r_t(b_t, a_t)$

- Optimal privacy-preserving control design
- Optimize $p_{Y_t|X_t,H}$ to minimize r_{II}^* and to satisfy average energy supply constraints.
- Results about $p_{Y_t|X_t,H}^*$:
- Energy control depends on H only such that $p_{Y_t|X_t,H}^*$ is a constant given (y_t, h) . $-|\mathcal{Y}^*| \leq 2$. $-\operatorname{If} |\mathcal{Y}^*| = 2, \ \mathcal{Y}^* = \{y_{\min}, y_{\max}\}.$

Numerical illustration

• Assumptions:

- $-f_0, f_1 \in [4, 6]$
- $-\text{Case 1: } y_{\min} = 1, y_{\max} = 9$
- $-\text{Case } 2: y_{\min} = 3, y_{\max} = 7$
- Two ways to suppress the privacy risk:
- -Increase the difference $y_{\text{max}} y_{\text{min}}$.
- -Decrease the difference $|f_0 f_1|$.

References

[1] D. Varodayan and A. Khisti, "Smart meter privacy using a rechargeable battery: Minimizing the rate of information

• Policy: $\delta_t : b_t \to a_t$

• Belief state transition: $Pr(b_{t+1}|b_t, a_t)$

On observing (calculating) the belief state b_t , a_t is determined based on δ_t . Then, the next belief state b_{t+1} can be calculated (observed) and the reward r_t can be determined.

- A privacy-preserving control design in belief state MDP formulation
- Let $\Delta = \{\delta_0, \delta_1, \dots\}.$
- Let $V = \sum_{t=0}^{\infty} \beta^t r_t$ where $0 \le \beta < 1$.
- A privacy-preserving objective: Optimize Δ to maximize V.
- Bellman equation: $V(\Delta^*, b_t) = \max_{a_t} \{ r_t(b_t, a_t) + \beta V(\Delta^*, b_{t+1}) \}$
- If the solution exists, there is a stationary optimal policy, i.e., $\delta_t^* = \delta^*$.
- $-\delta^*: b_t \to a_t^*$
- Established computational methods

- leakage," in *Proc. of ICASSP 2011*, 2011, pp. 1932-1935.
- [2] L. Sankar, S. R. Rajagopalan, S. Mohajer, and H. V. Poor, "Smart meter privacy: A theoretical framework," *IEEE Transactions on Smart Grid*, vol. 4, no. 2, pp 837-846, 2013.
- [3] D. Gündüz and J. Gomez-Vilardebo, "Smart meter privacy in the presence of an alternative energy source," in *Proc. of ICC 2013*, 2013, pp. 2027-2031.
- [4] O. Tan, D. Gündüz, and H. V. Poor, "Increasing smart meter privacy through energy harvesting and storage devices," *IEEE Journal on Selected Areas in Communications*, vol. 31, no. 7, pp. 1331-1341, 2013.
- [5] L. Yang, X. Chen, J. Zhang, and H. V. Poor, "Optimal privacy-preserving energy management for smart meters," in Proc. of INFOCOM 2014, 2014, pp. 513-521.
- [6] J. Yao and P. Venkitasubramaniam, "On the privacy-cost tradeoff of an in-home power storage mechanism," in Proc. of Allerton 2013, 2013, pp. 115-122.
- [7] S. Li, A. Khisti, and A. Mahajan, "Structure of optimal privacy-preserving policies in smart-metered systems with a rechargeable battery," in *Proc. of SPAWC 2015*, 2015, pp. 375-379.
- [8] Z. Li and T. J. Oechtering, "Privacy on hypothesis testing in smart grids," accepted at ITW 2015 Fall.
- [9] Z. Li, T. J. Oechtering, and M. Skoglund, "Privacy-preserving energy flow control in smart grids," submitted at ICASSP 2016.