RETHINKING CYBER SECURITY

Eugene H. Spafford
Purdue University CERIAS
http://ceri.as
WHAT IS SECURITY?

• If we talk about a system being “secure” what do we really mean?

• If we talk about “security features,” what are they?
Let’s start with an intuitive definition: a system is secure if it is protected against all forms of threat.
CYBER SECURITY

Random hackers?

Check!
CYBER SECURITY

Malware?
Probably.
CYBER SECURITY

Nation State Hackers?

Probably not.
CYBER SECURITY

UFO Invasion?

What? No!
CYBER SECURITY

Extinction Event Meteor Impact

Definitely not.
CYBER SECURITY

Maybe if we set up colonies on Mars and gave them backup copies?
Maybe if we set up colonies on Mars and gave them backup copies?

No, eventual death of the Sun will mean end of the inner planets.
As a definition, maybe that isn’t helpful — we can’t ever achieve it.

Actually, this exposes an issue: security is, at its heart, an economics issue.
Absolute security is unattainable. It is also dependent on context and resources.

• Robert Courtney articulate this with his 3 laws:
 • Nothing useful can be said about the security of a mechanism except in the context of a specific application and environment.
 • Never spend more mitigating a risk than tolerating it will cost you.
 • There are management solutions to technical problems but no technical solutions to management problems.
Let’s approach this as a problem of software design. Can we do a better job?
Initial research in the 1970s and 1980s looked at system state.

There are a set of states that are known to be “okay” or “safe.”
As a system executes, it changes state.

Each valid operation results in a state of the system that is also defined to be “okay.”
We also have “bad” states. We don’t want these to occur.
We don’t want to enter “bad” states. We especially don’t want to remain in them.
• This notion of “allowed states” is a match to the concept of “system specification” in software engineering.

• Execution of a state not in the specification is a “fault” that can result in a “failure.” A failure in a protected system is a security failure.
We also have “undefined” states. These aren’t specified.

Entering undefined states is an error. This may lead to a fault.
Undefined states might not be “bad” states.

They might even lead back to “okay” states. Because they are undefined, we do not know.
What it probably really looks like
• Most software today operates in the “undefined” state space because we have never defined its proper behavior.

• We have general requirements, but no specifications.

• Formal specifications are time-consuming and expensive. They also require expertise to define, and to build software to match.
INDUSTRY PRACTICE

The writers got it in *Jurassic Park*

Minimum training
THE CONSEQUENCE OF “DESIGN”

A program that has not been specified cannot be incorrect; it can only be surprising.

“It was just going to be a laser printer before we started adding features.”
METAPHORS FOR CURRENT SOFTWARE
BAD FEEDBACK

Hardware Complexity

Software Complexity
A SHORT COMMENT ON OPEN SOURCE
Golly! How could that happen when all of us could see the tracks?
Well, grab a hammer and a shovel. We can all work on it to make it safe.

Golly! How could that happen when all of us could see the tracks?
Well, grab a hammer and a shovel. We can all work on it to make it safe.

Golly! How could that happen when all of us could see the tracks?

Again?
SO, NEXT BEST: TRUST
SO, NEXT BEST: TRUST

• “believe in the reliability, truth, ability, or strength of”
SO, NEXT BEST: TRUST

• “believe in the reliability, truth, ability, or strength of”

• “allow someone to have, use, or look after something of importance or value with confidence”
SO, NEXT BEST: TRUST

• “believe in the reliability, truth, ability, or strength of”

• “allow someone to have, use, or look after something of importance or value with confidence”

• “commit something to the safekeeping of”
SO, NEXT BEST: TRUST

• “believe in the reliability, truth, ability, or strength of”

• “allow someone to have, use, or look after something of importance or value with confidence”

• “commit something to the safekeeping of”

• “place reliance on (luck, fate, or something else over which one has little control)”
CYBER... WHAT?
CYBER... WHAT?

- Cyber security is the science and practice of protecting information and information processing components from misuse during their design, creation, transmission, storage, transformation, use, and disposal.
CYBER... WHAT?

• Cyber security is the science and practice of protecting information and information processing components from misuse during their design, creation, transmission, storage, transformation, use, and disposal.

• Information assurance is the science and practice of increasing our confidence (trust) in the information security of a system.
CYBER... WHAT?

- Cyber security is the science and practice of protecting information and information processing components from misuse during their design, creation, transmission, storage, transformation, use, and disposal.

- Information assurance is the science and practice of increasing our confidence (trust) in the information security of a system.

- We need to use these two together.
FIRST ELEMENT: TRUST ALIGNMENT

My goals & values

Social/Gov goals & values

Employer goals & values
IDEAL TRUST ALIGNMENT

My goals & values
DYSFUNCTIONAL TRUST ALIGNMENT

Whose trust do we support?

- My goals & values
- Employer goals & values
- Social/Gov goals & values
COMPOUNDED TRUST

What are the limits of trust?

Supply chain...

Perhaps we can define tunable attributes — decompose security & trust
Lord Kelvin (William Thompson) wrote:

• “When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is a meagre and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely, in your thoughts, advanced to the stage of science.”
But consider where it came from….It was marketing, not design.
TRADITIONAL VIEW

• Not a good model — measures aren’t orthogonal
 • Integrity overlaps availability.
 • Availability trumps confidentiality
 • Any one can be used to disable the third.
• Might as well use rock, paper, scissors
DONN PARKER’S HEXAD

Confidentiality

Control

Availability

Authenticity

Integrity

Utility

Some better insight, but not much better.
WHAT PROPERTIES DO WE NEED?

• Which property is fundamental?

 • Correctness. Software & hardware should behave exactly as we define it and do nothing more.

 • Without this, nothing else can be said

• So where do we start?

 • Composable, trusted components:

 • Simplicity

 • Specificity

 • Limited interactions
OTHER PROPERTIES

• Non-subvertable parameterized access controls
• Non-interfering layering of authorities
• Intuitive, non-intrusive interface
• Useful, non-subvertable identification and tagging
• Standardized, hardened functions (e.g., crypto)
• Non-subvertable auditing
LIST OF PROPERTIES

• I can’t give you a more exact list. It’s a research agenda.

• Each property should be well-defined, achievable in some context, limited, and its output should be measurable. The measures should be composable.
KEY TAKEAWAY: ONE SIZE DOES NOT FIT ALL

• Robert Courtney’s 3 laws:

 • Nothing useful can be said about the security of a mechanism except in the context of a specific application and environment.

 • Never spend more mitigating a risk than tolerating it will cost you.

 • There are management solutions to technical problems but no technical solutions to management problems.
KEY TAKEAWAY: QUALITY, FIRST
KEY TAKEAWAY: IF YOU DON’T KNOW WHAT YOU’RE BUILDING, YOU’RE STUCK WITH WHAT YOU BUILD
TAKEAWAY: SECURITY MUST BE DESIGNED IN

• Adding it on afterwards results in gaps
HOW WILL WE DEFINE SECURITY?